Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.657
Filtrar
1.
PLoS One ; 17(2): e0261103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35196314

RESUMEN

A variety of islet autoantibodies (AAbs) can predict and possibly dictate eventual type 1 diabetes (T1D) diagnosis. Upwards of 75% of those with T1D are positive for AAbs against glutamic acid decarboxylase (GAD65 or GAD), a producer of gamma-aminobutyric acid (GABA) in human pancreatic beta cells. Interestingly, bacterial populations within the human gut also express GAD and produce GABA. Evidence suggests that dysbiosis of the microbiome may correlate with T1D pathogenesis and physiology. Therefore, autoimmune linkages between the gut microbiome and islets susceptible to autoimmune attack need to be further elucidated. Utilizing in silico analyses, we show that 25 GAD sequences from human gut bacterial sources show sequence and motif similarities to human beta cell GAD65. Our motif analyses determined that most gut GAD sequences contain the pyroxical dependent decarboxylase (PDD) domain of human GAD65, which is important for its enzymatic activity. Additionally, we showed overlap with known human GAD65 T cell receptor epitopes, which may implicate the immune destruction of beta cells. Thus, we propose a physiological hypothesis in which changes in the gut microbiome in those with T1D result in a release of bacterial GAD, thus causing miseducation of the host immune system. Due to the notable similarities we found between human and bacterial GAD, these deputized immune cells may then target human beta cells leading to the development of T1D.


Asunto(s)
Autoanticuerpos/inmunología , Bacterias/enzimología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/microbiología , Microbioma Gastrointestinal/inmunología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Simulación por Computador , Diabetes Mellitus Tipo 1/enzimología , Epítopos de Linfocito T/inmunología , Genes Bacterianos , Humanos , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/inmunología , Ratones , Pan troglodytes/microbiología , Filogenia , Dominios Proteicos , Alineación de Secuencia/métodos , Ácido gamma-Aminobutírico/metabolismo
2.
Nature ; 600(7890): 720-726, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34880500

RESUMEN

The liberation of energy stores from adipocytes is critical to support survival in times of energy deficit; however, uncontrolled or chronic lipolysis associated with insulin resistance and/or insulin insufficiency disrupts metabolic homeostasis1,2. Coupled to lipolysis is the release of a recently identified hormone, fatty-acid-binding protein 4 (FABP4)3. Although circulating FABP4 levels have been strongly associated with cardiometabolic diseases in both preclinical models and humans4-7, no mechanism of action has yet been described8-10. Here we show that hormonal FABP4 forms a functional hormone complex with adenosine kinase (ADK) and nucleoside diphosphate kinase (NDPK) to regulate extracellular ATP and ADP levels. We identify a substantial effect of this hormone on beta cells and given the central role of beta-cell function in both the control of lipolysis and development of diabetes, postulate that hormonal FABP4 is a key regulator of an adipose-beta-cell endocrine axis. Antibody-mediated targeting of this hormone complex improves metabolic outcomes, enhances beta-cell function and preserves beta-cell integrity to prevent both type 1 and type 2 diabetes. Thus, the FABP4-ADK-NDPK complex, Fabkin, represents a previously unknown hormone and mechanism of action that integrates energy status with the function of metabolic organs, and represents a promising target against metabolic disease.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Islotes Pancreáticos , Fosfotransferasas , Adipocitos/metabolismo , Diabetes Mellitus/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/fisiología , Lipólisis , Nucleósidos/metabolismo , Fosfotransferasas/metabolismo
3.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34415994

RESUMEN

Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.


Asunto(s)
Autoinmunidad/fisiología , Islotes Pancreáticos/enzimología , Fagocitos/fisiología , Linfocitos T/inmunología , Tirosina Quinasa c-Mer/inmunología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos/inmunología , Antígenos/metabolismo , Antígenos CD11/metabolismo , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Islotes Pancreáticos/inmunología , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/inmunología , Fagocitos/inmunología , Piperazinas/farmacología , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo
4.
Proteomics ; 21(7-8): e2000176, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33548107

RESUMEN

Proteasomal spliced peptides (PSPs) have been identified in the class I major histocompatibility complex (MHC) peptidomes of several tumors and have emerged as novel neoantigens that can stimulate highly specific T cells. Much debate has surrounded the percentage of PSPs in the immunopeptidome; reported numbers have ranged from <1-5% to 12-45%. Recently, our laboratory demonstrated in nonobese diabetic (NOD) mice that hybrid insulin peptides (HIPs), a special class of spliced peptides, are formed during insulin granule degradation in crinosomes of the pancreatic ß cells and that modified peptides comprised a significant source of false positive HIP assignments. Herein, this study is extended to crinosomes isolated from other mouse strains and to two recent MHC class I studies, to see if modified peptides explained discrepancies in reported percentages of PSPs. This analysis revealed that both MHC-I peptidomes contained many spectra erroneously assigned as PSPs. While many false positive PSPs did arise from modified peptides, others arose from probable data processing errors. Thus, the reported numbers of PSPs in the literature are likely elevated due to errors associated with data processing and analysis.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Islotes Pancreáticos/metabolismo , Péptidos/metabolismo , Animales , Insulina , Islotes Pancreáticos/enzimología , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo
5.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998359

RESUMEN

Mitogen-activated protein kinase phosphatase-5 (MKP-5) is a regulator of extracellular signaling that is known to regulate lipid metabolism. In this study, we found that obesity caused by a high-fat diet (HFD) decreased the expression of MKP-5 in the pancreas and primary islet cells derived from mice. Then, we further investigated the role of MKP-5 in the protection of islet cells from lipotoxicity by modulating MKP-5 expression. As a critical inducer of lipotoxicity, palmitic acid (PA) was used to treat islet ß-cells. We found that MKP-5 overexpression restored PA-mediated autophagy inhibition in Rin-m5f cells and protected these cells from PA-induced apoptosis and dysfunction. Consistently, a lack of MKP-5 aggravated the adverse effects of lipotoxicity. Islet cells from HFD-fed mice were infected using recombinant adenovirus expressing MKP-5 (Ad-MKP-5), and we found that Ad-MKP-5 was able to alleviate HFD-induced apoptotic protein activation and relieve the HFD-mediated inhibition of functional proteins. Notably, HFD-mediated impairments in autophagic flux were restored by Ad-MKP-5 transduction. Furthermore, the autophagy inhibitor 3-methyladenine (3-MA) was used to treat Rin-m5f cells, confirming that the MKP-5 overexpression suppressed apoptosis, dysfunction, inflammatory response, and oxidative stress induced by PA via improving autophagic signaling. Lastly, employing c-Jun amino-terminal kinas (JNK), P38, or extracellular-regulated kinase (ERK) inhibitors, we established that the JNK and P38 MAPK pathways were involved in the MKP-5-mediated apoptosis, dysfunction, and autophagic inhibition observed in islet ß cells in response to lipotoxicity.


Asunto(s)
Autofagia/genética , Fosfatasas de Especificidad Dual/genética , Islotes Pancreáticos/enzimología , Metabolismo de los Lípidos/genética , Obesidad/genética , Adenina/análogos & derivados , Adenina/farmacología , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Fosfatasas de Especificidad Dual/metabolismo , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Obesidad/enzimología , Obesidad/etiología , Obesidad/patología , Ácido Palmítico/antagonistas & inhibidores , Ácido Palmítico/toxicidad , Cultivo Primario de Células , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Transducción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Clin Sci (Lond) ; 134(13): 1679-1696, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32633320

RESUMEN

Type 1 diabetes is an autoimmune disease resulted from self-destruction of insulin-producing pancreatic ß cells. However, the pathological pathways that trigger the autoimmune destruction remain poorly understood. Clinical studies have demonstrated close associations of neutrophils and neutrophil elastase (NE) with ß-cell autoimmunity in patients with Type 1 diabetes. The present study aims to investigate the impact of NE inhibition on development of autoimmune diabetes in NOD mice. NE pharmacological inhibitor (sivelestat) or biological inhibitor (elafin) was supplemented into NOD mice to evaluate their effects on islet inflammation and diabetogenesis. The impact of NE inhibition on innate and adaptive immune cells was measured with flow cytometry and immunohistochemistry. A significant but transient increase in neutrophil infiltration accompanied with elevated NE activity was observed in the neonatal period of NOD mice. Treatment of NOD mice with sivelestat or elafin at the early age led to a marked reduction in spontaneous development of insulitis and autoimmune diabetes. Mechanistically, inhibition of NE significantly attenuated infiltration of macrophages and islet inflammation, thus ameliorating cytotoxic T cell-mediated autoimmune attack of pancreatic ß cells. In vitro studies showed that NE directly induced inflammatory responses in both min6 ß cells and RAW264.7 macrophages, and promoted macrophage migration. These findings support an important role of NE in triggering the onset and progression of ß-cell autoimmunity, and suggest that pharmacological inhibition of NE may represent a promising therapeutic strategy for treatment of autoimmune diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/enzimología , Islotes Pancreáticos/inmunología , Elastasa de Leucocito/inmunología , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Femenino , Humanos , Inmunidad Innata , Células Secretoras de Insulina/inmunología , Islotes Pancreáticos/enzimología , Elastasa de Leucocito/genética , Ratones , Ratones Endogámicos NOD , Infiltración Neutrófila , Neutrófilos/enzimología , Neutrófilos/inmunología , Linfocitos T Citotóxicos/inmunología
7.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492936

RESUMEN

Chronic exposure of pancreatic ß-cells to elevated nutrient levels impairs their function and potentially induces apoptosis. Like in other cell types, AMPK is activated in ß-cells under conditions of nutrient deprivation, while little is known on AMPK responses to metabolic stresses. Here, we first reviewed recent studies on the role of AMPK activation in ß-cells. Then, we investigated the expression profile of AMPK pathways in ß-cells following metabolic stresses. INS-1E ß-cells and human islets were exposed for 3 days to glucose (5.5-25 mM), palmitate or oleate (0.4 mM), and fructose (5.5 mM). Following these treatments, we analyzed transcript levels of INS-1E ß-cells by qRT-PCR and of human islets by RNA-Seq; with a special focus on AMPK-associated genes, such as the AMPK catalytic subunits α1 (Prkaa1) and α2 (Prkaa2). AMPKα and pAMPKα were also evaluated at the protein level by immunoblotting. Chronic exposure to the different metabolic stresses, known to alter glucose-stimulated insulin secretion, did not change AMPK expression, either in insulinoma cells or in human islets. Expression profile of the six AMPK subunits was marginally modified by the different diabetogenic conditions. However, the expression of some upstream kinases and downstream AMPK targets, including K-ATP channel subunits, exhibited stress-specific signatures. Interestingly, at the protein level, chronic fructose treatment favored fasting-like phenotype in human islets, as witnessed by AMPK activation. Collectively, previously published and present data indicate that, in the ß-cell, AMPK activation might be implicated in the pre-diabetic state, potentially as a protective mechanism.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Regulación Enzimológica de la Expresión Génica , Islotes Pancreáticos/enzimología , Adulto , Animales , Glucemia/análisis , Femenino , Fructosa/metabolismo , Perfilación de la Expresión Génica , Homeostasis , Humanos , Insulina/metabolismo , Insulinoma/enzimología , Masculino , Persona de Mediana Edad , Ácido Oléico/análisis , Ácido Palmítico/análisis , Fenotipo , RNA-Seq , Ratas , Estrés Fisiológico
8.
Adv Exp Med Biol ; 1221: 607-630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274728

RESUMEN

Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. The degradation of the glycosaminoglycan heparan sulfate (HS) by the endo-ß-D-glycosidase heparanase plays a critical role in multiple stages of the disease process. Heparanase aids (i) migration of inflammatory leukocytes from the vasculature to the islets, (ii) intra-islet invasion by insulitis leukocytes, and (iii) selective destruction of beta cells. These disease stages are marked by the solubilization of HS in the subendothelial basement membrane (BM), HS breakdown in the peri-islet BM, and the degradation of HS inside beta cells, respectively. Significantly, healthy islet beta cells are enriched in highly sulfated HS which is essential for their viability, protection from damage by reactive oxygen species (ROS), beta cell function and differentiation. Consequently, mouse and human beta cells but not glucagon-producing alpha cells (which contain less-sulfated HS) are exquisitely vulnerable to heparanase-mediated damage. In vitro, the death of HS-depleted mouse and human beta cells can be prevented by HS replacement using highly sulfated HS mimetics or analogues. T1D progression in NOD mice and recent-onset T1D in humans correlate with increased expression of heparanase by circulating leukocytes of myeloid origin and heparanase-expressing insulitis leukocytes. Treatment of NOD mice with the heparanase inhibitor and HS replacer, PI-88, significantly reduced T1D incidence by 50%, impaired the development of insulitis and preserved beta cell HS. These outcomes identified heparanase as a novel destructive tool in T1D, distinct from the conventional cytotoxic and apoptosis-inducing mechanisms of autoreactive T cells. In contrast to exogenous catalytically active heparanase, endogenous heparanase may function in HS homeostasis, gene expression and insulin secretion in normal beta cells and immune gene expression in leukocytes. In established diabetes, the interplay between hyperglycemia, local inflammatory cells (e.g. macrophages) and heparanase contributes to secondary micro- and macro-vascular disease. We have identified dual activity heparanase inhibitors/HS replacers as a novel class of therapeutic for preventing T1D progression and potentially for mitigating secondary vascular disease that develops with long-term T1D.


Asunto(s)
Diabetes Mellitus Tipo 1/enzimología , Glucuronidasa/metabolismo , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Glucuronidasa/antagonistas & inhibidores , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/patología
9.
Biophys J ; 117(11): 2188-2203, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31753287

RESUMEN

Understanding how cell subpopulations in a tissue impact overall system function is challenging. There is extensive heterogeneity among insulin-secreting ß-cells within islets of Langerhans, including their insulin secretory response and gene expression profile, and this heterogeneity can be altered in diabetes. Several studies have identified variations in nutrient sensing between ß-cells, including glucokinase (GK) levels, mitochondrial function, or expression of genes important for glucose metabolism. Subpopulations of ß-cells with defined electrical properties can disproportionately influence islet-wide free-calcium activity ([Ca2+]) and insulin secretion via gap-junction electrical coupling. However, it is poorly understood how subpopulations of ß-cells with altered glucose metabolism may impact islet function. To address this, we utilized a multicellular computational model of the islet in which a population of cells deficient in GK activity and glucose metabolism was imposed on the islet or in which ß-cells were heterogeneous in glucose metabolism and GK kinetics were altered. This included simulating GK gene (GCK) mutations that cause monogenic diabetes. We combined these approaches with experimental models in which gck was genetically deleted in a population of cells or GK was pharmacologically inhibited. In each case, we modulated gap-junction electrical coupling. Both the simulated islet and the experimental system required 30-50% of the cells to have near-normal glucose metabolism, fewer than cells with normal KATP conductance. Below this number, the islet lacked any glucose-stimulated [Ca2+] elevations. In the absence of electrical coupling, the change in [Ca2+] was more gradual. As such, electrical coupling allows a large minority of cells with normal glucose metabolism to promote glucose-stimulated [Ca2+]. If insufficient numbers of cells are present, which we predict can be caused by a subset of GCK mutations that cause monogenic diabetes, electrical coupling exacerbates [Ca2+] suppression. This demonstrates precisely how metabolically heterogeneous ß-cell populations interact to impact islet function.


Asunto(s)
Calcio/metabolismo , Uniones Comunicantes , Glucoquinasa/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Animales , Glucoquinasa/genética , Islotes Pancreáticos/enzimología , Ratones , Mutación
10.
Korean J Intern Med ; 34(2): 365-374, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29228766

RESUMEN

BACKGROUND/AIMS: This study was performed to determine whether adding coenzyme Q10 (CoQ10) to metformin (MET) has a beneficial effect as a treatment for sirolimus (SRL)-induced diabetes mellitus (DM). METHODS: DM was induced in rats by daily treatment with SRL (0.3 mg/kg, subcutaneous) for 28 days, and animals were treated with CoQ10 (20 mg/kg, oral) and MET (250 mg/kg, oral) alone or in combination for the latter 14 days of SRL treatment. The effects of CoQ10 and MET on SRL-induced DM were assessed with the intraperitoneal glucose tolerance test (IPGTT) and by determining plasma insulin concentration and the homeostatic model assessment of insulin resistance (HOMA-R) index. We also evaluated the effect of CoQ10 on pancreatic islet size, apoptosis, oxidative stress, and mitochondria morphology. RESULTS: IPGTT revealed overt DM in SRL-treated rats. The addition of CoQ10 to MET further improved hyperglycemia, decreased HOMA-R index, and increased plasma insulin concentration compared with the SRL group than MET alone therapy. While SRL treatment induced smaller islets with decreased insulin staining intensity, the combination of CoQ10 and MET significantly improved insulin staining intensity, which was accompanied by a reduction in oxidative stress and apoptosis. In addition, co-treatment of CoQ10 and MET significantly increased the levels of antiperoxidative enzymes in the pancreas islet cells compared with MET. At the subcellular level, addition of CoQ10 to MET improved the average mitochondrial area and insulin granule number. CONCLUSION: Addition of CoQ10 to MET has a beneficial effect on SRL-induced DM compared to MET alone.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Islotes Pancreáticos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Ubiquinona/análogos & derivados , Vitaminas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Islotes Pancreáticos/enzimología , Masculino , Metformina/farmacología , Metformina/uso terapéutico , Mitocondrias/ultraestructura , Distribución Aleatoria , Ratas Sprague-Dawley , Sirolimus , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Vitaminas/farmacología
11.
J Histochem Cytochem ; 67(2): 99-105, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30265185

RESUMEN

Viral infection of the insulin-producing cells in the pancreas has been proposed in the etiology of type 1 diabetes. Protein kinase R (PKR) is a cytoplasmic protein activated through phosphorylation in response to cellular stress and particularly viral infection. As PKR expression in pancreatic beta-cells has been interpreted as a viral footprint, this cross-sectional study aimed at characterizing the PKR expression in non-diabetic human pancreases. PKR expression was evaluated in pancreas tissue from 16 non-diabetic organ donors, using immunohistochemistry, qPCR, and western blot. Immunohistochemistry and western blot showed readily detectable PKR expression in the pancreatic parenchyma. The qPCR detected PKR mRNA in both endocrine and exocrine samples, with a slightly higher expression in the islets. In conclusion, PKR is constitutively expressed in both endocrine and exocrine parts of the pancreas and its expression should not be interpreted as a viral footprint in pancreatic beta cells.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Páncreas/enzimología , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Humanos , Islotes Pancreáticos/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Food Chem Toxicol ; 120: 305-320, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30026088

RESUMEN

Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1ß and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Própolis , Animales , Glucemia/metabolismo , Caspasa 3/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Sinergismo Farmacológico , Inhibidores de Glicósido Hidrolasas/farmacología , Insulina/sangre , Interleucina-1/metabolismo , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/fisiopatología , Malasia , Masculino , Malondialdehído/metabolismo , FN-kappa B/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas Sprague-Dawley , Estreptozocina
13.
Methods Mol Biol ; 1766: 197-208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605854

RESUMEN

The regulatory mechanisms that ensure an accurate control of gene transcription are central to cellular function, development and disease. Such mechanisms rely largely on noncoding regulatory sequences that allow the establishment and maintenance of cell identity and tissue-specific cellular functions.The study of chromatin structure and nucleosome positioning allowed revealing transcription factor accessible genomic sites with regulatory potential, facilitating the comprehension of tissue-specific cis-regulatory networks. Recently a new technique coupled with high-throughput sequencing named Assay for Transposase Accessible Chromatin (ATAC-seq) emerged as an efficient method to chart open chromatin genome wide. The application of such technique to different cell types allowed unmasking tissue-specific regulatory elements and characterizing cis-regulatory networks. Herein we describe the implementation of the ATAC-seq method to human pancreatic islets, a tissue playing a central role in the control of glucose metabolism.


Asunto(s)
Cromatina/efectos de los fármacos , Cromatina/genética , Ensayos Analíticos de Alto Rendimiento , Islotes Pancreáticos/enzimología , Transposasas/farmacología , Cromatina/química , Epigenómica , Humanos , Islotes Pancreáticos/química , Nucleosomas/química , Nucleosomas/efectos de los fármacos , Nucleosomas/genética , Control de Calidad , Alineación de Secuencia , Análisis de Secuencia de ADN , Técnicas de Cultivo de Tejidos , Transcripción Genética , Transposasas/química
14.
PLoS One ; 12(12): e0189722, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29240812

RESUMEN

Vaspin (visceral adipose tissue-derived serine protease inhibitor) is a recently discovered adipokine that has been implicated in diabetes mellitus and other metabolic disorders. However, the effects of vaspin on pancreatic ß cell function and related mechanisms are not fully understood. Thus, the present study was performed to investigate the effects of vaspin on pancreatic ß cell function and the potential underlying mechanisms. Both in vitro (rat insulinoma cells, INS-1) and in vivo (high fat diet fed rats) experiments were conducted. The results showed that vaspin significantly increased INS-1 cell secretory function. Potential mechanisms were explored using inhibitors, western blot and real-time PCR techniques. We found that vaspin increased the levels of IRS-2 mRNA and IRS-2 total protein, while decreased the serine phosphorylation level of IRS-2 protein. Moreover, vaspin increased the Akt phosphorylation protein level which was reversed by PI3K inhibitor ly294002. In addition, vaspin increased the phosphorylation levels of mTOR and p70S6K, which was inhibited by rapamycin. Meanwhile, we found that the NF-κB mRNA and protein levels were reduced after vaspin treatment, similar to the effect of NF-κB inhibitor TPCK. Furthermore, vaspin increased the glucose stimulated insulin secretion (GSIS) level, lowered blood glucose level and improved the glucose tolerance and insulin sensitivity of high fat diet fed rats. Hyperglycemic clamp test manifested that vaspin improved islet ß cell function. Together, these findings provide a new understanding of the function of vaspin on pancreatic ß cell and suggest that it may serve as a potential agent for the prevention and treatment of type 2 diabetes.


Asunto(s)
Islotes Pancreáticos/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serpinas/fisiología , Transducción de Señal , Animales , Glucemia/metabolismo , Línea Celular Tumoral , Prueba de Tolerancia a la Glucosa , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina , Islotes Pancreáticos/enzimología , Masculino , Fosforilación , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley
15.
J Biol Chem ; 292(49): 20292-20304, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29070677

RESUMEN

Increasing evidence suggests a crucial role of inflammation in cytokine-mediated ß-cell dysfunction and death in type 1 diabetes mellitus, although the mechanisms are incompletely understood. Sphingosine 1-phosphate (S1P) is a multifunctional bioactive sphingolipid involved in the development of many autoimmune and inflammatory diseases. Here, we investigated the role of intracellular S1P in insulin-secreting INS1E cells by genetically manipulating the S1P-metabolizing enzyme S1P lyase (SPL). The expression of spl was down-regulated by cytokines in INS1E cells and rat islets. Overexpression of SPL protected against cytokine toxicity. Interestingly, the SPL overexpression did not suppress the cytokine-induced NFκB-iNOS-NO pathway but attenuated calcium leakage from endoplasmic reticulum (ER) stores as manifested by lower cytosolic calcium levels, higher expression of the ER protein Sec61a, decreased dephosphorylation of Bcl-2-associated death promoter (Bad) protein, and weaker caspase-3 activation in cytokine-treated (IL-1ß, TNFα, and IFNγ) cells. This coincided with reduced cytokine-mediated ER stress, indicated by measurements of CCAAT/enhancer-binding protein homologous protein (chop) and immunoglobulin heavy chain binding protein (bip) levels. Moreover, cytokine-treated SPL-overexpressing cells exhibited increased expression of prohibitin 2 (Phb2), involved in the regulation of mitochondrial assembly and respiration. SPL-overexpressing cells were partially protected against cytokine-mediated ATP reduction and inhibition of glucose-induced insulin secretion. siRNA-mediated spl suppression resulted in effects opposite to those observed for SPL overexpression. Knockdown of phb2 partially reversed beneficial effects of SPL overexpression. In conclusion, the relatively low endogenous Spl expression level in insulin-secreting cells contributes to their extraordinary vulnerability to proinflammatory cytokine toxicity and may therefore represent a promising target for ß-cell protection in type 1 diabetes mellitus.


Asunto(s)
Aldehído-Liasas/genética , Aldehído-Liasas/fisiología , Citocinas/toxicidad , Células Secretoras de Insulina/enzimología , Adenosina Trifosfato/metabolismo , Aldehído-Liasas/biosíntesis , Animales , Línea Celular , Citocinas/farmacología , Diabetes Mellitus Tipo 1/patología , Estrés del Retículo Endoplásmico , Inflamación/inducido químicamente , Inflamación/prevención & control , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/enzimología , Ratas
16.
J Endocrinol ; 235(3): 237-249, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28931557

RESUMEN

Oxidative stress is a major cause of islet injury and dysfunction during isolation and transplantation procedures. Cyanidin-3-O-glucoside (C3G), which is present in various fruits and vegetables especially in Chinese bayberry, shows a potent antioxidant property. In this study, we determined whether C3G could protect neonatal porcine islets (NPI) from reactive oxygen species (H2O2)-induced injury in vitro and promote the function of NPI in diabetic mice. We found that C3G had no deleterious effect on NPI and that C3G protected NPI from damage induced by H2O2 Significantly higher hemeoxygenase-1 (HO1) gene expression was detected in C3G-treated NPI compared to untreated islets before and after transplantation (P < 0.05). Western blot analysis showed a significant increase in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3K/Akt) proteins in C3G-treated NPI compared to untreated islets. C3G induced the nuclear translocation of nuclear erythroid 2-related factor 2 (NRF2) and the significant elevation of HO1 protein. Recipients of C3G-treated NPI with or without C3G-supplemented drinking water achieved normoglycemia earlier compared to recipients of untreated islets. Mice that received C3G-treated islets with or without C3G-supplemented water displayed significantly lower blood glucose levels at 5-10 weeks post-transplantation compared to mice that received untreated islets. Mice that received C3G-treated NPI and C3G-supplemented drinking water had significantly (P < 0.05) lower blood glucose levels at 7 and 8 weeks post-transplantation compared to mice that received C3G-treated islets. These findings suggest that C3G has a beneficial effect on NPI through the activation of ERK1/2- and PI3K/AKT-induced NRF2-mediated HO1 signaling pathway.


Asunto(s)
Animales Recién Nacidos , Antocianinas/farmacología , Antioxidantes/farmacología , Glucósidos/farmacología , Islotes Pancreáticos/efectos de los fármacos , Sus scrofa , Animales , Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/análisis , Hemo-Oxigenasa 1/genética , Peróxido de Hidrógeno/farmacología , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/lesiones , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Sistema de Señalización de MAP Quinasas , Ratones , Proteína Quinasa 1 Activada por Mitógenos/análisis , Proteína Quinasa 3 Activada por Mitógenos/análisis , Factor 2 Relacionado con NF-E2/fisiología , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/análisis , Especies Reactivas de Oxígeno/farmacología , Transducción de Señal/efectos de los fármacos , Trasplante Heterólogo/métodos
17.
Diabetes Obes Metab ; 19 Suppl 1: 63-75, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28880478

RESUMEN

Glucose-stimulated insulin secretion (GSIS) involves interplay between metabolic and cationic events. Seminal contributions from multiple laboratories affirm essential roles for small G-proteins (Rac1, Cdc42, Arf6, Rab27A) in GSIS. Activation of these signalling proteins promotes cytoskeletal remodeling, transport and docking of insulin granules on the plasma membrane for exocytotic secretion of insulin. Evidence in rodent and human islets suggests key roles for lipidation (farnesylation and geranylgeranylation) of these G-proteins for their targeting to appropriate cellular compartments for optimal regulation of effectors leading to GSIS. Interestingly, however, inhibition of prenylation appears to cause mislocalization of non-prenylated, but (paradoxically) activated G-proteins, in "inappropriate" compartments leading to activation of stress kinases and onset of mitochondrial defects, loss in GSIS and apoptosis of the islet ß-cell. This review highlights our current understanding of roles of G-proteins and their post-translational lipidation (prenylation) signalling networks in islet function in normal health, metabolic stress (glucolipotoxicity and ER stress) and diabetes. Critical knowledge gaps that need to be addressed for the development of therapeutics to halt defects in these signalling steps in ß-cells in models of impaired insulin secretion and diabetes are also highlighted and discussed.


Asunto(s)
Diabetes Mellitus/fisiopatología , Exocitosis , Proteínas de Unión al GTP/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/fisiología , Islotes Pancreáticos/fisiopatología , Modelos Biológicos , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Animales , Apoptosis , Glucemia/metabolismo , Diabetes Mellitus/enzimología , Diabetes Mellitus/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Unión al GTP/genética , Regulación Enzimológica de la Expresión Génica , Humanos , Insulina/sangre , Secreción de Insulina , Islotes Pancreáticos/enzimología , Islotes Pancreáticos/metabolismo , Prenilación de Proteína , Transporte de Proteínas , Transducción de Señal , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas rab27 de Unión a GTP/genética , Proteínas rab27 de Unión a GTP/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
18.
Diabetes Obes Metab ; 19 Suppl 1: 90-94, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28880482

RESUMEN

After multiple decades of investigation, the precise mechanisms involved in fuel-stimulated insulin secretion are still being revealed. One avenue for gaining deeper knowledge is to apply emergent tools of "metabolomics," involving mass spectrometry and nuclear magnetic resonance-based profiling of islet cells in their fuel-stimulated compared with basal states. The current article summarizes recent insights gained from application of metabolomics tools to the specific process of glucose-stimulated insulin secretion, revealing 2 new mechanisms that may provide targets for improving insulin secretion in diabetes.


Asunto(s)
Investigación Biomédica/métodos , Islotes Pancreáticos/metabolismo , Metabolómica/métodos , Modelos Biológicos , Animales , Investigación Biomédica/tendencias , Exocitosis , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/enzimología , Metabolómica/tendencias , Vías Secretoras
19.
Diabetes Obes Metab ; 19 Suppl 1: 30-41, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28466490

RESUMEN

Ca2+ is the key intracellular regulator of insulin secretion, acting in the ß-cell as the ultimate trigger for exocytosis. In response to high glucose, ATP-sensitive K+ channel closure and plasma membrane depolarization engage a sophisticated machinery to drive pulsatile cytosolic Ca2+ changes. Voltage-gated Ca2+ channels, Ca2+ -activated K+ channels and Na+ /Ca2+ exchange all play important roles. The use of targeted Ca2+ probes has revealed that during each cytosolic Ca2+ pulse, uptake of Ca2+ by mitochondria, endoplasmic reticulum (ER), secretory granules and lysosomes fine-tune cytosolic Ca2+ dynamics and control organellar function. For example, changes in the expression of the Ca2+ -binding protein Sorcin appear to provide a link between ER Ca2+ levels and ER stress, affecting ß-cell function and survival. Across the islet, intercellular communication between highly interconnected "hubs," which act as pacemaker ß-cells, and subservient "followers," ensures efficient insulin secretion. Loss of connectivity is seen after the deletion of genes associated with type 2 diabetes (T2D) and follows metabolic and inflammatory insults that characterize this disease. Hubs, which typically comprise ~1%-10% of total ß-cells, are repurposed for their specialized role by expression of high glucokinase (Gck) but lower Pdx1 and Nkx6.1 levels. Single cell-omics are poised to provide a deeper understanding of the nature of these cells and of the networks through which they communicate. New insights into the control of both the intra- and intercellular Ca2+ dynamics may thus shed light on T2D pathology and provide novel opportunities for therapy.


Asunto(s)
Señalización del Calcio , Comunicación Celular , Islotes Pancreáticos/metabolismo , Modelos Biológicos , Animales , Membrana Celular/enzimología , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Retículo Endoplásmico/enzimología , Retículo Endoplásmico/metabolismo , Exocitosis , Uniones Comunicantes/enzimología , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/enzimología , Mitocondrias/enzimología , Mitocondrias/metabolismo , Vías Secretoras
20.
J Endocrinol ; 233(3): 369-379, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28438776

RESUMEN

In addition to degrading misfolded and damaged proteins, the proteasome regulates the fate of cells in response to stress. The role of the proteasome in pro-inflammatory cytokine-induced human beta-cell apoptosis is unknown. Using INS-1, INS-1E and human islets exposed to combinations of IFNγ, IL-1ß and TNFα with or without addition of small molecules, we assessed the role of the immunoproteasome in pancreatic beta-cell demise. Here, we show that cytokines induce the expression and activity of the immuno-proteasome in INS-1E cells and human islets. Cytokine-induced expression of immuno-proteasome subunits, but not activity, depended upon histone deacetylase 3 activation. Inhibition of JAK1/STAT1 signaling did not affect proteasomal activity. Inhibition of the immuno-proteasome subunit PSMB8 aggravated cytokine-induced human beta-cell apoptosis while reducing intracellular levels of oxidized proteins in INS-1 cells. While cytokines increased total cellular NFκB subunit P50 and P52 levels and reduced the cytosolic NFκB subunit P65 and IκB levels, these effects were unaffected by PSMB8 inhibition. We conclude that beta cells upregulate immuno-proteasome expression and activity in response to IFNγ, likely as a protective response to confine inflammatory signaling.


Asunto(s)
Apoptosis/efectos de los fármacos , Citocinas/fisiología , Islotes Pancreáticos/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Histona Desacetilasas/fisiología , Humanos , Proteínas I-kappa B/metabolismo , Janus Quinasa 1/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA